Method of balancing equation (solving simple equations )

 




Today, i will teach you how to balance equation with terms.Its stated that,an equation is a mathematical statement that says that two things are equal.We should consider the following statement.

4 pencils and 6 pencils give 10 pencils.

7 boys and 5 girls give in primary 5  give 12 pupils.


These statements can be written mathematically as:

4 pencils + 6 pencils = 10 pencils

7 boys +  5 girls = 12 pupils



Example 1

 ⃞  + 3 =14   

21 -   ⃞ = 6

                  4
3 x  ⃞ = --------
                  3

 ⃞ ÷ 14 = 2




Solution


This means,the empty boxes represent the unknown numbers.The empty boxes can be then replaced with letters,thus the statement above could be written as:


y + 3 =14   

21 -   x = 6




              4
3p =  --------
              3


u  ÷  14 = 2




From the above explanations,we can see that the highest power of unknown variables/numbers is (1), i mean ( x)¹.



Examples of clearing the bracket to form equation and collecting like terms

Solve the following equations.


(a) 3(4y  - 1 )= 27

(b) 2(x + 5 ) - 12 = 4

(c) 5x - 3(3x - 1 ) = 39




Scope: The equations contain brackets. To operate them, we first open the brackets ,let goo...

(a) 3(4y  - 1 )= 27

   12y - 3 = 27 ( brackets  opened.)

  Add 3 to both sides.

12y - 3 + 3= 27 + 3

 12y = 30

Divide both sides by 12.

    12y             30
 ---------  = ----------- 
     12              12    
   
              1  
 y =2 ---------
              2
 
  
Check:


3(4y  - 1 )= 27

             5
3(4 x ------  - 1 ) = 27
            2
 
3 ( 10 - 1 ) = 27

3 x 9 = 27

27 = 27

That good, you can see how i manipulate the variables.To solve the above equations,clear the brackets first to form an equation.After that, you add others elements,to check you substitute the letters with number.



(b) 2(+ 5 ) - 12 = 4

       2x + 10 - 12 =4    (brackets opened)

    2x - 2 = 4  

Add 2 to both sides.

 2x - 2 + 2 = 4 + 2

  2x = 6

Divide both sides by 2.

    2x          6
------- = --------
    2           2

   
x =  3


Check:
 
2(+ 5 ) - 12 = 4

2 ( 3 + 5 - 12) = 4 ( BODMAS)

2 x 8

16 - 12 = 4

4 = 4




 
(c) 5- 3(3x - 1 ) = 39

  5x - 9x + 3 = 39

 4x  + 3 = 39

subtract 3 from both sides .


 4x + 3 - 3 = 39 - 3

  4x  = 36

Divide both side by 4.

   4x          36
-------= ---------
   4             4


x = 9







Example 2

Now let look at this particular one that have 2 brackets to be cleared.


Solve these:

(i) 5(r - 1 ) + 4( (r + 2) = 75

     5r - 5 + 4r + 8 = 75 ( Brackets cleared.)

      5+ 4r  - 5 + 8 ( collecting like terms.)

      9r +3 = 75

     Subtract 3 from both sides.

    9r +3 - 3 = 75 - 3

    9r = 72


Divide both by 9.

    9r               72
---------   = -----------
    9                  9


   = 8


Check:

5(r - 1 )  +  4( (r + 2) = 75

 5(8 -1)  + 4(8 +2) = 75

 40 - 5 + 32 + 8 =75 -----we have opened the bracket

 35 + 40 

 75 = 75 .... a balance equation.


Now solve the following:



(a)  4(x + 6) - 3x = 25

(b) 1 + 3(y - 1) =4

(c) 7k - (2 - k) = 0

(d) 3(2a + 1 ) +  2(a -1 ) =-23

If you have questions,put them in the comments box.

Post a Comment

0 Comments